

General Certificate of Education Advanced Level Examination January 2012

Mathematics

Unit Further Pure 2

Friday 20 January 20121.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) Show, by means of a sketch, that the curves with equations

$$
\begin{aligned}
& y=\sinh x \\
& y=\operatorname{sech} x
\end{aligned}
$$

and
have exactly one point of intersection.
(b) Find the x-coordinate of this point of intersection, giving your answer in the form $a \ln b$.

2 (a) Draw on an Argand diagram the locus L of points satisfying the equation $\arg z=\frac{\pi}{6}$.
(b) (i) A circle C, of radius 6, has its centre lying on L and touches the line $\operatorname{Re}(z)=0$. Draw C on your Argand diagram from part (a).
(ii) Find the equation of C, giving your answer in the form $\left|z-z_{0}\right|=k$.
(iii) The complex number z_{1} lies on C and is such that $\arg z_{1}$ has its least possible value. Find $\arg z_{1}$, giving your answer in the form $p \pi$, where $-1<p \leqslant 1$.

3 A curve has cartesian equation

$$
y=\frac{1}{2} \ln (\tanh x)
$$

(a) Show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sinh 2 x} \tag{4marks}
\end{equation*}
$$

(b) The points A and B on the curve have x-coordinates $\ln 2$ and $\ln 4$ respectively. Find the arc length $A B$, giving your answer in the form $p \ln q$, where p and q are rational numbers.

4
The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=\frac{3}{4} \quad u_{n+1}=\frac{3}{4-u_{n}}
$$

Prove by induction that, for all $n \geqslant 1$,

$$
\begin{equation*}
u_{n}=\frac{3^{n+1}-3}{3^{n+1}-1} \tag{6marks}
\end{equation*}
$$

5 Find the smallest positive integer values of p and q for which

$$
\begin{equation*}
\frac{\left(\cos \frac{\pi}{8}+\mathrm{i} \sin \frac{\pi}{8}\right)^{p}}{\left(\cos \frac{\pi}{12}-\mathrm{i} \sin \frac{\pi}{12}\right)^{q}}=\mathrm{i} \tag{7marks}
\end{equation*}
$$

6 (a) Express $7+4 x-2 x^{2}$ in the form $a-b(x-c)^{2}$, where a, b and c are integers. (2 marks)
(b) By means of a suitable substitution, or otherwise, find the exact value of

$$
\int_{1}^{\frac{5}{2}} \frac{\mathrm{~d} x}{\sqrt{7+4 x-2 x^{2}}}
$$

$7 \quad$ The numbers α, β and γ satisfy the equations

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =-10-12 \mathrm{i} \\
\alpha \beta+\beta \gamma+\gamma \alpha & =5+6 \mathrm{i}
\end{aligned}
$$

(a) Show that $\alpha+\beta+\gamma=0$.
(b) The numbers α, β and γ are also the roots of the equation

$$
z^{3}+p z^{2}+q z+r=0
$$

Write down the value of p and the value of q.
(c) It is also given that $\alpha=3 \mathrm{i}$.
(i) Find the value of r.
(ii) Show that β and γ are the roots of the equation

$$
z^{2}+3 \mathrm{i} z-4+6 \mathrm{i}=0
$$

(iii) Given that β is real, find the values of β and γ.

8 (a) Write down the five roots of the equation $z^{5}=1$, giving your answers in the form $\mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<\theta \leqslant \pi$.
(b) Hence find the four linear factors of

$$
z^{4}+z^{3}+z^{2}+z+1
$$

(c) Deduce that

$$
\begin{equation*}
z^{2}+z+1+z^{-1}+z^{-2}=\left(z-2 \cos \frac{2 \pi}{5}+z^{-1}\right)\left(z-2 \cos \frac{4 \pi}{5}+z^{-1}\right) \tag{4marks}
\end{equation*}
$$

(d) Use the substitution $z+z^{-1}=w$ to show that $\cos \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}$.

